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• This chapter introduces Bayesian network. 

Representing Knowledge
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• Recall the variables Toothache, Cavity, Catch, and Weather. We argued that 

Weather is independent of the other variables; we argued that Toothache and 

Catch are conditionally independent, given Cavity. 

• The conditional independence of Toothache and Catch, given Cavity, is 

indicated by the absence of a link between Toothache and Catch. 

Representing Knowledge
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• You have a new burglar alarm (竊盜警報器) installed at home. It is fairly 

reliable at detecting a burglary, but also responds on occasion to minor 

earthquakes. 

• You also have two neighbors, John and Mary, who have promised to call you 

at work when they hear the alarm. John nearly always calls when he hears the 

alarm, but sometimes confuses the telephone ringing with the alarm and calls 

then, too. Mary, on the other hand, likes rather loud music and often misses the 

alarm altogether. 

Representing Knowledge
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• The network structure shows that burglary and earthquakes directly affect the 

probability of the alarm’s going off, but whether John and Mary call depends 

only on the alarm. 

• The network thus represents our assumptions that they do not perceive 

burglaries directly, they do not notice minor earthquakes, and they do not 

confer (協商) before calling.

Representing Knowledge
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• The conditional distributions are shown as a conditional probability table, or 

CPT. 

• A node with no parents has only one row, representing the prior probabilities

of each possible value of the variable. 

• The probabilities actually summarize a potentially infinite set of circumstances 

in which the alarm might fail to go off (high humidity, power failure, dead 

battery, cut wires, a dead mouse stuck inside the bell, etc.) or John or Mary 

might fail to call and report it (out to lunch, on vacation, temporarily deaf, 

passing helicopter, etc.). 

• In this way, a small agent can cope with a very large world, approximately.

Representing Knowledge
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• We can calculate the probability that the alarm has sounded, but neither a 

burglary nor an earthquake has occurred, and both John and Mary call. 

Representing the full joint distribution
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Representing the full joint distribution
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• A method for constructing Bayesian networks



• Intuitively, the parents of node Xi should contain all those nodes in X1, . . . , 

Xi−1 that directly influence Xi. 

• Because each node is connected only to earlier nodes, this construction method 

guarantees that the network is acyclic. 

Representing the full joint distribution
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• Compactness and node ordering

• One might object to our burglary network on the grounds that if there is an 

earthquake, then John and Mary would not call even if they heard the alarm, 

because they assume that the earthquake is the cause. 

• Whether to add the link from Earthquake to JohnCalls and MaryCalls (and 

thus enlarge the tables) depends on comparing the importance of getting more 

accurate probabilities with the cost of specifying the extra information.

Representing the full joint distribution
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• Even in a locally structured domain, we will get a compact 

Bayesian network only if we choose the node ordering well. 

What happens if we happen to choose the wrong order? 

• Suppose we decide to add the nodes in the order MaryCalls, 

JohnCalls, Alarm, Burglary, Earthquake. We then get the 

somewhat more complicated network shown in Figure 14.3(a).

Representing the full joint distribution
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• The process goes as follows:

Representing the full joint distribution
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• The resulting network has two more links than the original network in Figure 

14.2 and requires three more probabilities to be specified. What’s worse, some 

of the links represent tenuous (稀薄的) relationships that require difficult and 

unnatural probability judgments, such as assessing the probability of 

Earthquake, given Burglary and Alarm. 

Representing the full joint distribution
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• The topological semantics specifies that each variable is conditionally 

independent of its non-descendants, given its parents (Figure 14.4(a)). 

• A node is conditionally independent of all other nodes in the network, given its 

parents, children, and children’s parents—that is, given its Markov blanket. 

Conditional independence relations in 

Bayesian networks

16



Conditional independence relations in 

Bayesian networks
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• Many real-world problems involve continuous quantities. 

• By definition, continuous variables have an infinite number of possible values, 

so it is impossible to specify conditional probabilities explicitly for each value. 

• One possible way to handle continuous variables is using discretization—that 

is, dividing up the possible values into a fixed set of intervals. 

• For example, temperatures could be divided into (<0C), (0C−100C), and 

(>100C). Discretization is sometimes an adequate solution, but often results in 

a considerable loss of accuracy and very large CPTs.

Bayesian nets with continuous variables
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• The most common solution is to define standard families of probability density 

functions that are specified by a finite number of parameters. For example, a 

Gaussian (or normal) distribution N(μ,σ2)(x) has the mean μ and the variance 

σ2 as parameters. 

• Yet another solution—sometimes called a nonparametric representation—is 

to define the conditional distribution implicitly with a collection of instances, 

each containing specific values of the parent and child variables. 

Bayesian nets with continuous variables
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• A network with both discrete and continuous variables is called a hybrid 

Bayesian network. 

• Consider a customer buys some fruit depending on its cost, which depends in 

turn on the size of the harvest (收穫) and whether the government’s subsidy 

(補貼) scheme is operating. The variable Cost is continuous and has 

continuous and discrete parents; the variable Buys is discrete and has a 

continuous parent.

Bayesian nets with continuous variables

26



Bayesian nets with continuous variables

27



• For the Cost variable, we need to specify P(Cost | Harvest, Subsidy). The 

discrete parent is handled by enumeration—that is, by specifying both P(Cost | 

Harvest, subsidy) and P(Cost | Harvest, ¬subsidy). 

• To handle Harvest, we specify how the distribution over the cost c depends on 

the continuous value h of Harvest. In other words, we specify the parameters

of the cost distribution as a function of h. The most common choice is the 

linear Gaussian distribution, in which the child has a Gaussian distribution 

whose mean μ varies linearly with the value of the parent and whose standard 

deviation σ is fixed.

Bayesian nets with continuous variables
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• We need two distributions, one for subsidy and one for ¬subsidy, with different 

parameters:

• For this example, then, the conditional distribution for Cost is specified by 

naming the linear Gaussian distribution and providing the parameters at, bt, σt, 

af, bf, and σf. Figures 14.6(a) and (b) show these two relationships. 

Bayesian nets with continuous variables
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• Figure 14.6(c) shows the distribution P(c | h), averaging over the two possible 

values of Subsidy and assuming that each has prior probability 0.5. This shows 

that even with very simple models, quite interesting distributions can be 

represented.

Bayesian nets with continuous variables
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• It seems reasonable to assume that the customer will buy if the cost is low and 

will not buy if it is high and that the probability of buying varies smoothly in 

some intermediate region. The conditional distribution is like a “soft” 

threshold function. One way to make soft thresholds is to use the integral of 

the standard normal distribution:

Bayesian nets with continuous variables
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• Then the probability of Buys given Cost might be 

which means that the cost threshold occurs around μ, the width of the threshold 

region is proportional to σ, and the probability of buying decreases as cost 

increases. 

• This probit distribution (pronounced “pro-bit” and short for “probability 

unit”) is illustrated in Figure 14.7(b). 

Bayesian nets with continuous variables
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• An alternative to the probit model is the logit distribution (pronounced “low-

jit”). It uses the logistic function 1/(1 + e−x) to produce a soft threshold: 

• This is illustrated in Figure 14.7(b). The two distributions look similar, but the 

logit actually has much longer “tails.” The probit is often a better fit to real 

situations, but the logit is sometimes easier to deal with mathematically. It is 

used widely in neural networks. 

Bayesian nets with continuous variables
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• The basic task for any probabilistic inference system is to compute the 

posterior probability distribution for a set of query variables, given some 

observed event. 

• Let X denotes the query variable; E denotes the set of evidence variables 

E1 , . . . , Em , and e is a particular observed event; Y will denote the 

nonevidence, nonquery variables Y1, . . . , Yl (called the hidden variables). 

Thus, the complete set of variables is X = {X} ∪ E ∪ Y. A typical query asks 

for the posterior probability distribution P(X | e).

Exact Inference in Bayesian Networks
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• In the burglary network, we might observe the event in which JohnCalls = 

true and MaryCalls = true. We could then ask for, say, the probability that a 

burglary has occurred:

Exact Inference in Bayesian Networks

38



• Any conditional probability can be computed by summing terms from the full 

joint distribution. 

• More specifically, Equation (14.2) shows that the terms P(x, e, y) in the joint 

distribution can be written as products of conditional probabilities from the 

network. Therefore, a query can be answered using a Bayesian network by 

computing sums of products of conditional probabilities from the network.

Inference by enumeration
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• Consider the query P(Burglary | JohnCalls=true, MaryCalls=true). The hidden 

variables for this query are Earthquake and Alarm. Using initial letters for the 

variables to shorten the expressions, we have

• The semantics of Bayesian networks (Equation (14.2)) then gives us an 

expression in terms of CPT entries. For simplicity, we do this just for Burglary

= true:

Inference by enumeration
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• To compute this expression, we have to add four terms, each computed by 

multiplying five numbers. In the worst case, where we have to sum out almost 

all the variables, the complexity of the algorithm for a network with n Boolean 

variables is O(n2n). 

• An improvement can be obtained from the following simple observations: the 

P(b) term is a constant and can be moved outside the summations over a and e, 

and the P(e) term can be moved outside the summation over a. Hence, we 

have

Inference by enumeration
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• The structure of this computation is shown in Figure 14.8. Using the numbers 

from Figure 14.2, we obtain P(b | j, m) = α × 0.00059224. The corresponding 

computation for ¬b yields α × 0.0014919; hence, 

That is, the chance of a burglary, given calls from both neighbors, is about 

28%.

Inference by enumeration
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• The complexity of exact inference in Bayesian networks depends strongly on 

the structure of the network. 

• The burglary network has at most one path between any two nodes. These are 

called singly connected networks or polytrees. The time and space 

complexity of exact inference in polytrees is linear in the size of the network. 

The complexity of exact inference
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• For multiply connected networks, such as that of Figure 14.12(a), variable 

elimination can have exponential time and space complexity in the worst case, 

even when the number of parents per node is bounded. In fact, it can be 

shown that the problem is an NP-hard problem. 

The complexity of exact inference
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• Given the intractability of exact inference in large, multiply connected 

networks, it is essential to consider approximate inference methods. 

• Monte Carlo algorithms provide approximate answers whose accuracy 

depends on the number of samples generated. 

• Monte Carlo algorithms are used in many branches of science to estimate 

quantities that are difficult to calculate exactly. In this section, we describe 

two families of algorithms: direct sampling and Markov chain sampling. 

Approximate Inference in Bayesian Nets
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• The primitive element in any sampling algorithm is the generation of samples 

from a known probability distribution. For example, an unbiased coin can be 

thought of as a random variable Coin with values ⟨heads, tails⟩ and a prior 

distribution P(Coin) = ⟨0.5,0.5⟩. 

• Sampling from this distribution is exactly like flipping the coin: with 

probability 0.5 it will return heads, and with probability 0.5 it will return tails. 

• Sample each variable in turn, in topological order. The probability distribution 

from which the value is sampled is conditioned on the values already assigned 

to the variable’s parents. 

Direct sampling methods
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• We can illustrate its operation on the network in Figure 14.12(a), assuming an 

ordering [Cloudy, Sprinkler, Rain, WetGrass]: 

• In this case, PRIOR-SAMPLE returns the event [true, false, true, true].

Direct sampling methods
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• It is easy to see that PRIOR-SAMPLE generates samples from the prior joint 

distribution specified by the network. First, let SPS (x1, . . . , xn) be the 

probability that a specific event is generated by the PRIOR-SAMPLE 

algorithm. Just looking at the sampling process, we have 

because each sampling step depends only on the parent values.

Direct sampling methods
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• This expression should look familiar, because it is also the probability of the 

event according to the Bayesian net’s representation of the joint distribution, 

as stated in Equation (14.2). That is, we have

This simple fact makes it easy to answer questions by using samples.

Direct sampling methods
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• Suppose there are N total samples, and let NPS(x1, . . . , xn) be the number of 

times the specific event x1 , . . . , xn occurs in the set of samples. We expect 

this number, as a fraction of the total, to converge in the limit to its expected 

value according to the sampling probability:

For example, consider the event produced earlier: [true, false, true, true]. The 

sampling probability for this event is

in the limit of large N, we expect 32.4% of the samples to be of this event. 

Direct sampling methods
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• Whenever we use (“≈”), we mean that the estimated probability becomes 

exact in the large-sample limit. Such an estimate is called consistent. 

• For example, one can produce a consistent estimate of the probability of any 

partially specified event x1 , . . . , xm, where m ≤ n, as follows: 

That is, the probability of the event can be estimated as the fraction of all 

complete events generated by the sampling process that match the partially 

specified event. For example, if we generate 1000 samples from the sprinkler 

network, and 511 of them have Rain = true, then the estimated probability of 

rain, written as P(Rain = true), is 0.511.

Direct sampling methods
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• Rejection sampling in Bayesian networks

• Rejection sampling is a general method for producing samples from a hard-

to-sample distribution given an easy-to-sample distribution. In its simplest 

form, it can be used to compute conditional probabilities—that is, to 

determine P(X | e). 

• The REJECTION-SAMPLING algorithm first generates samples from the 

prior distribution specified by the network. Then, it rejects all those that do 

not match the evidence. 

Finally, the estimate P(X = x | e) is obtained by counting how often X = x

occurs in the remaining samples.

Direct sampling methods
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• The true answer is ⟨0.3, 0.7⟩. As more samples are collected, the estimate will 

converge to the true answer. The standard deviation of the error in each 

probability will be proportional to           , where n is the number of samples 

used in the estimate.

• The biggest problem with rejection sampling is that it rejects so many samples! 

The fraction of samples consistent with the evidence e drops exponentially as 

the number of evidence variables grows, so the procedure is simply unusable 

for complex problems.

Direct sampling methods
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• Notice that rejection sampling is very similar to the estimation of conditional 

probabilities directly from the real world. For example, to estimate P(Rain | 

RedSkyAtNight = true), one can simply count how often it rains after a red sky 

is observed the previous evening— ignoring those evenings when the sky is 

not red. (Here, the world itself plays the role of the sample-generation 

algorithm.) Obviously, this could take a long time if the sky is very seldom 

red, and that is the weakness of rejection sampling.

Direct sampling methods

71



• Markov chain Monte Carlo (MCMC) algorithms work quite differently 

from rejection sampling and likelihood weighting. Instead of generating each 

sample from scratch, MCMC algorithms generate each sample by making a 

random change to the preceding sample. 

• Here we describe a particular form of MCMC called Gibbs sampling, which 

is especially well suited for Bayesian networks. 

Inference by Markov chain simulation
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• Gibbs sampling in Bayesian networks

• The Gibbs sampling algorithm for Bayesian networks starts with an arbitrary 

state (with the evidence variables fixed at their observed values) and generates 

a next state by randomly sampling a value for one of the nonevidence 

variables Xi. The sampling for Xi is done conditioned on the current values of 

the variables in the Markov blanket of Xi. (Recall that the Markov blanket of a 

variable consists of its parents, children, and children’s parents.) The 

algorithm therefore flips one variable at a time, but keeping the evidence 

variables fixed.

Inference by Markov chain simulation
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• Consider the query P(Rain | Sprinkler = true, WetGrass = true) applied to the 

network in Figure 14.12(a). The evidence variables Sprinkler and WetGrass

are fixed to their observed values and the nonevidence variables Cloudy and 

Rain are initialized randomly— let us say to true and false respectively. Thus, 

the initial state is [true, true, false, true]. Now the nonevidence variables are 

sampled repeatedly in an arbitrary order.

Inference by Markov chain simulation
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